The forbidden minor characterization of line-search antimatroids of rooted digraphs

نویسندگان

  • Yoshio Okamoto
  • Masataka Nakamura
چکیده

An antimatroid is an accessible union-closed family of subsets of a 0nite set. A number of classes of antimatroids are closed under taking minors such as point-search antimatroids of rooted (di)graphs, line-search antimatroids of rooted (di)graphs, shelling antimatroids of rooted trees, shelling antimatroids of posets, etc. The forbidden minor characterizations are known for point-search antimatroids of rooted (di)graphs, shelling antimatroids of rooted trees and shelling antimatroids of posets. In this paper, we give the forbidden minor characterization of line-search antimatroids of rooted digraphs. ? 2002 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Several Aspects of Antimatroids and Convex Geometries Master's Thesis

Convexity is important in several elds, and we have some theories on it. In this thesis, we discuss a kind of combinatorial convexity, in particular, antimatroids and convex geometries. An antimatroid is a combinatorial abstraction of convexity. It has some di erent origins; by Dilworth in lattice theory, by Edelman and Jamison in the notions of convexity, by Korte{Lov asz who were motivated by...

متن کامل

Excluded-Minor Characterizations of Antimatroids arisen from Posets and Graph Searches

7 An antimatroid is a family of sets such that it contains an empty set, and it is accessible and closed under union of sets. An antimatroid is an ‘antipodal’ concept of matroid. 9 We shall show that an antimatroid is derived from shelling of a poset if and only if it does not contain a minor isomorphic to S7 where S7 is the smallest semimodular lattice that is not 11 modular. It is also shown ...

متن کامل

NP by Means of Lifts and Shadows

We show that every NP problem is polynomially equivalent to a simple combinatorial problem: the membership problem for a special class of digraphs. These classes are defined by means of shadows (projections) and by finitely many forbidden colored (lifted) subgraphs. Our characterization is motivated by the analysis of syntactical subclasses with the full computational power of NP, which were fi...

متن کامل

Interval Partitions and Activities for the Greedoid Tutte Polynomial

Ž . The two variable greedoid Tutte polynomial f G; t, z , which was introduced in previous work of the authors, is studied via external activities. Two different partitions of the Boolean lattice of subsets are derived and a feasible set expansion Ž . of f G is developed. All three of these results generalize theorems for matroids. One interval partition yields a characterization of antimatroi...

متن کامل

Interval graphs, adjusted interval digraphs, and reflexive list homomorphisms

Interval graphs admit linear time recognition algorithms and have several elegant forbidden structure characterizations. Interval digraphs can also be recognized in polynomial time and admit a characterization in terms of incidence matrices. Nevertheless, they do not have a known forbidden structure characterization or low-degree polynomial time recognition algorithm. We introduce a new class o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 131  شماره 

صفحات  -

تاریخ انتشار 2003